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This paper describes the theoretical basis, the design, and the method of cali- 
brating heat gauges for measuring variable heat fluxes. 

Auxiliary Wall Type of Heat Gauge* 

Heat gauges based on the so-called auxiliary wall technique are widely used to measure 
heat flux. These gauges take the form of a thermal insulator carrying a differential thermo- 
couple or thermopile. Recently, semiconductor heat gauges have found increasing use. For a 
steady flux P the relation between the flux and the potential difference AE or temperature 
difference Atm on the surface of a heat gauge is given by the well-known formula [i] 

P = gAE = kAt,,. (1 )  

We c o n s i d e r  t h e  p o s s i b l e  m e a s u r e m e n t  o f  an  u n s t e a d y  h e a t  f l u x  u s i n g  t h i s  t y p e  o f  g a u g e .  
We r e p r e s e n t  t h e  g a u g e  i n  t h e  f o r m  o f  an  i n f i n i t e  f l a t  p l a t e ,  one  s u r f a c e  o f  w h i c h  a b s o r b s  a 
h e a t  f l u x  P ( z ) ,  w h i l e  t h e  s e c o n d  s u r f a c e  e x c h a n g e s  h e a t  w i t h  s u r r o u n d i n g  s p a c e  i n  a d i f f e r e n t  
m a n n e r ,  i . e . ,  t h e r e  a r e  s e v e r a l  p o s s i b l e  c o n d i t i o n s  a t  t h e  b o u n d a r y  x = ; ( F i g .  l a ) .  Assum-  
i n g  t h a t  t h e  t h e r m o p h y s i c a l  p r o p e r t i e s  o f  t h e  h e a t  g a u g e  and  t h e  h e a t - t r a n s f e r  c o n d i t i o n s  a t  
t h e  b o u n d a r i e s  a r e  i n d e p e n d e n t  o f  t e m p e r a t u r e ,  we c a n  w r i t e  a d i f f e r e n t i a l  e q u a t i o n  f o r  t h e  
t e m p e r a t u r e  f i e l d  i n  t h e  p l a t e :  

O2t Ot ~ - -  = c p -  (2) 
Ox 2 & 

We now apply the operator 

l 

i ~ [dx 
I [f] = T 

0 

to both sides of the equation, apply the boundary conditions at x = 0: 

P (~c) "t~ Ot 'x=o " - -  - -  S 

Ox 

and transform Eq. (2) 

(3) 

(4) 

l 
t~-- [ O~t 
l . Ox z 
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l 

 x= i0(0  ) z ] 
0 

l 

cPt .i dTOl d x =  cp Ot~Ox 
0 

Here t v denotes the volume average temperature, 

*We shall designate these heat gauges as "ordinary" in the remainder of the paper. 
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l 

I [t] = -7- .t tdx = t~. 
0 

(5) 

Following transformation Eq. (2) takes the form 

P (~) = C dt~dr )~S oxOt x=/ (6)  

The l a s t  t e r m  i n  Eq.  (6)  c an  be  e x p r e s s e d  t h r o u g h  t h e  c o n d i t i o n  a t  t h e  b o u n d a r y  x = 1. 
The surface x = l can dissipate heat into a vacuum, or to a gaseous or liquid medium, or it 
can be attached to the surface of a solid body. In other words, there can be boundary condi- 

tions of the third or fourth kind, i.e., 

_ _ %  Ot  x =  ~. x = t  = - -  )~T x - t  ( 7 )  
=~z( t l__ tm)  ' __~ Ot Ot, 

Ox Ox - ~ x  . _ " 

Equation (6) indicates that it is possible to measure a heat flux P(T) which varies with 
time, using heat gauges of this type. To do this one must know the variation of the volume 
average temperature t v with time and the temperature gradient at the boundary x = 1 at differ- 

ent times. 

We consider possible measurement of these quantities. Measurement of the average volume 
temperature of a gauge encounters more or less difficulty depending on the gauge structure, 
and, as a rule, requires some modification, since the heat gauge is constructed for possible 

measurement of temperature drop at its surface. 

Measurement of the temperature gradient at the surface x = 1 is rather more complicated. 
One cannot measure this directly, but can only do so with the help of conditions (7). The 
following relations can be derived from Eqs. (6) and (7): 

P (T) C dl, = + = S  ( h  - -  to ) ,  ( 8 )  
dv 

P (~) -- C clt~ ~T Ot~ ~=l 
dr  --Of-x " (9 )  

It follows from Eqs. (8) and (9) that to determine the flux P(~), besides the variation 
of average volume temperature with time, one must measure either the temperature at the wall 
x = I and the temperature t m of the surrounding medium, or the temperature gradient ~tT/3Xlx= / 
in the body to which the gauge is attached. In addition, one must know the parameters a and 

h T which describe the gauge operating conditions. 

Although it is possible to measure the gradient 3tT/3xlx=/, there are major engineering 
difficulties. As regards the parameters a and XT, these can be determined from calibration 
tests, but such tests are valid only for the conditions in which the test data are obtained. 

Thus, analysis of Eq. (6) leads to the following conclusions: 

The measurement of a heat flux P(T) which varies with time cannot be made using formulas 

of type (i), obtained for steady conditions; 

ordinary heat gauges based on the auxiliary wall method are not well suited for the un- 

steady problem; 

the greatest difficulty in the measurement stems from determination of the last term in 

Eqs. (6), (8), and (9). 

Combination and RC Heat Gauges 

We consider a system of bodies consisting of an ordinary heat gauge I and a wall 2 sepa- 
rated from i by a gas gap 3 (Fig. ib). In practice, this system can be implemented using a 
cap 2, attached to the gauge I and separated from it by a narrow gap 3 and insulating gasket 
4 (Fig. ic). We assume that we can measure the temperature differenc~ At = tiIx=/1 -- t21x=/2 , 
and then the last term in Eq. (6) can be put in the form 
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and Eq. (6) takes the form 
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Fig. 2. Schematic of test rig for heat 
gauge calibration. 

Ot 
- -  ~ s  - -  f = ~t, 

Ox !x=t 

P ( T ) = C  dt~ cat. 
dr (10) 

E q u a t i o n  (10) assumes t h a t  the  gap 3 p o s s e s s e s  n e g l i g i b l y  s m a l l  h e a t  c a p a c i t y  i n  com- 
p a r i s o n  w i t h  t he  c a p a c i t y  C of  the  gauge .  The p a r a m e t e r  a ,  t he  t h e r m a l  c o n d u c t i v i t y  o f  t h e  
gap,  i s  i n d e p e n d e n t  of  the  gauge o p e r a t i n g  c o n d i t i o n s .  The gap s i z e  i s  chosen  so t h a t  t h e r e  
i s  no d i f f i c u l t y  i n  c a l c u l a t i n g  t he  c o n v e c t i v e  h e a t  f l u x ,  which  t h e r e f o r e  e l i m i n a t e s  the  c o n -  
d i t i o n s  making for ambiguity in determining the parameter ~. 

The problem of determining P(r) is appreciably simplified if the temperature distribu- 
tion in body 1 is uniform, when t v = tl, and At = tl -- t2 (t2 E t2ix=12), and then Eq. (i0) 
takes the form 

P (T) := C dl--!-a -~ ~ (t I -- Iz). (ii) 
d~ 

Determination of the flux P(T) from Eq. (ii) requires measurement of temperatures tl 
and t2 of bodies 1 and 2 at different times; the parameters C and a are constants Of the 
gauge and are found from calibration tests. 

Below, we shall call this arrangement an RC gauge, since it represents a body 1 with 
capacity C and practically zero thermal resistance, Oombined with body 3 with resistance 
R = -I and practically zero heat capacity. We shall call the system of a body with finite 
resistance and a gap of practically zero capacity a combination heat gauge. Clearly, the RC 
gauge is a special case of the combination gauge. 

We represent Eq. (ii) in the form 

p(~) = 1 dt~ ~ ~ (/1_t2), (12) 
moR d~ R 

1 1 
m~ RC ' R = --a ' (13) 

and consider a method of determining the parameters mo and R from calibration tests. Figure 
2a shows two identical heat gauges, with a heater 4 located between them, and the faces of 
the gauges covered by insulators 6. Attached to plates 2 are slabs 5 through which a tempera- 
ture-control liquid circulates, to maintain temperature t2 at any prescribed level. Under 
steady conditions one measures the heater power P and from Eq. (12) with the condition 
dt:/dT = 0 we have an expression for calculating R: 

R= 2 (t' -- t2) (14) 
P 

Here it is assumed that the heat flux P from the heater passes equally through both gauges, 
and that there are no losses through the edges because of the presence of insulator 6. 

1381 



To determine the parameter mo one can use the following test scheme. Heater 4 is 
switched on and the variation of the temperature of each of the heat gauges is described by 
Eq. (12), in which we put T = 0. Then 

dr1 d In (t 1 - -  t2) 
mo (tl - -  t2) d~ dT (15 )  

E q u a t i o n  ( 1 5 )  i s  a d e f i n i t i o n  o f  t h e  c o o l i n g  r a t e  o f  t h e  b o d y ,  a n d  we c a n  u s e  c o n v e n -  
t i o n a l  m e t h o d s  o f  d e t e r m i n i n g  t h i s  p a r a m e t e r ,  s u c h  a s  h a v e  b e e n  d e v e l o p e d  i n  c o n t r o l  t h e o r y  
[21. 

We now consider the combination heat gauge for which Eq. (i0) is valid. We designate 
the temperature at the surface x = 11 of the gauge as t~Ix=l I = ts, and we shall consider 
the temperature t=Ix=la = t2 as being that of the medium surrounding the gauge. Taking this 
notation into account, and also the parameters of Eq. (13), we can rewrite Eq, (i0) in the 
form 

�9 1__!_  - . d ( t  s - -  to) 1 ( t  s _ t2 ) ,  ( 1 6 )  

m I := mo~ , /p ---- ts - -  ~s 
t~ - - t  2 ( 1 7 )  

The criterion ~ describes the level of nonuniformity of the temperature field in the 
body, illustrated in Fig. 2b. This body is a twin heat gauge or a plate of double thickness, 
at the center of which there is a plane energy source. The body is located in a medium with 
constant temperature t2. We know that under steady heat conditions of the first kind the 
criterion ~ is independent of time and the parameter m~ can be determined experimentally in 
the same way as for the RC gauge, and appropriate computations were carried out usingEq. (15). 
Under steady conditions of the second and third kinds the criterion ~, as was shown in [3], 
is also invariant with time, so that we can use Eq. (16) to measure P(T). However, the 
method of determining the parameter m~ and also the error in measuring P(~) when the gauge 
conditions are transitional requires supplementary investigation. In other words, the possi- 
bilities of the combined gauges are limited compared with the RC gauges. 

Error inHeat Flux Measurement 

The RC heat gauge is used to measure the flux P(r) absorbed by surface I and conducted 
through the gap 3 (Fig. ic). Here the temperature t= of surface 2 can vary, not only due to 
the flux P(T), but also because of any other flux absorbed by the wall 2. For example, there 
can be temperature oscillations of the medium washing the wall 2. We give the name "noise" 
to variations in wall temperature of heat gauges i and 2 arising from causes other than the 
measured heat flux P(~). In [4] it was shown that using a relation of type (12) one could 
measure P(r) in the presence of any form of external noise. However, the nature and magni- 
tude of the noise affect the accuracy of measurement of flux P(~). It was shown that the 
error in determining the power depends on: the thermal conditions of the bodies i and 2 of 
the gauge; the parameters ml and R which characterize the gauge construction; the accuracy 
class of' the measuring instrument used. 

In [4, 6] results weregiven of an analysis of the thermal conditions of bodies i and 2 
with different variations in the heat flux P(T) and the external noise. A method is described 
for choosing the parameters m~ and R and the measuring instruments, so that the error AP/P in 
determining the heat flux does not exceed the prescribed values. 

Responsiveness and Sensitivity of RC Gauges 

The responsiveness of a heat gauge is defined as its capacity to react (to vary its tem- 
perature Atl) to a minimum change in the flux AP occurring in a specific time interval AT, 
i.e., the responsiveness is associated with the quantity dtl/dT. If we differentiate all the 
terms of Eq. (ii) with respect to time, with t2 = const, and designated dtl/dT = T(r), dP/dT = 
b, we obtain the differential equation 

dT b 
dr + moT= --C-, ( 1 8 )  

relating the desired parameter T with the variation in power b. 
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Assuming the initial conditions and solving Eq. (18) for the case b = const, we obtain, 
in particular, the following formula for determining the coefficient ~ = i/m of the thermal 
responsiveness of the gauge [5, 6]: 

A~ 
e - -  (19) 

AP 
!n 

AP - -  ~At 
We define the sensitivity n of the gauge as the ratio of the reactions (t~ --t2) of the 

RC gauge to the measured heat flux P, 

h - -  t'2 
n -- (20) 

P 

From Eq. (12) we obtain an expression for (t~ -- t=) = f(r), and instead of mo and R we 
take their values from Eq. (13): 

and substitute into Eq. (19): [ c d 1] 
a P(T) dl: (21) 

It is clear from Eq. (21) that the sensitivity, in general, depends on the structural 
parameters o and C and the regime factors P(T) and dt:/dr. From analysis of the heat condi- 
tions for bodies i and 2 which make up the RC gauge, [4] obtained a dependence for dt~/dr for 
different regimes of variation of P(~). These relations allow us to use Eq. (20) to deter- 
mine the sensitivity in different measurement cases; in particular, for dtl/dT = 0, i.e., 
under steady conditions, we obtain the well-known relation ~ = 0 -I 

In conclusion, we note that the present paper has considered only the theoretical possi- 
bilities of measuring a heat flux which varies with time using a self-contained instrument, 
a combination or an RC-type gauge. A good deal of analytical, experimental, and engineering 
work is required prior to practical application of this kind of instrument, capable of the 
required level of error, responsiveness, and sensitivity. 

NOTATION 

P, heat flux to be measured; g, k, coefficients of proportionality; AE, AtT, difference 
in potentials and temperatures at the surfaces of the ordinary heat gauge; T, time; x, ambi- 
ent coordinate; l, 11, 12, linear dimensions of the heat gauge; c, C, h, p, specific and 
total heat capacities, thermal conductivity, and density of the ordinary heat gauge; S, sur- 
face area of the gauge; l[f], an operator; tv, average volume temperature of the ordinary 
gauge; hT, tT, thermal conductivity and temperature of a solid body; tl, temperature at the 
surface (x = l) of the ordinary gauge; t m, temperature of the medium surrounding the gauge; 
ts, temperature at the surface (x = l~) of the combination gauge; ~, R, thermal conductivity 
and resistance of the gap; At, temperature drop at the gap; tl, t2, temperatures of bodies I 
and 2 of the RC gauge; ~, criterion for nonuniformity of temperature field in the body shown 
in Fig. 2b; 5P/P, error in determining the heat flux; AT, time interval in which one must 
measure the minimum change in power AP; At:, minimum change in temperature of body i; ~, sen- 
sitivity of the heat gauge; a, total heat-transfer coefficient; ~, thermal inertia coefficient. 

i. 
2. 
3. 

4. 
5. 
6. 
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